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1. Introduction

Integrability of four dimensional planar Yang-Mills theories is a quite relevant feature that

permits in principle to obtain non-perturbative results [1]. It first appeared as a surprising

fact in the one-loop analysis of special QCD subsectors [2]. Later, its universality became

more and more clear due to the many extensions at higher orders [3 – 5].

Currently, a deep understanding of its origin is achieved by means of Maldacena

AdS/CFT correspondence [6]. In the maximal supersymmetric N = 4 Yang-Mills theory,

integrability of the superconformal side is related to integrability of the dual superstring
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theory on AdS5 × S5 [7]. As a major outcome, a deeply motivated higher loop proposal

for the S-matrix of the pair N = 4 SYM/type II on AdS5 ×S5 is now available [8 – 17]. In

this paper, we shall work within this framework assuming the validity of the above ansatz,

although the subject is still under development [18].

We restrict our considerations to the so-called sl(2) sector of N = 4 SYM which is

an invariant subsector closed under perturbative renormalization mixing. It is spanned by

single trace operators obtained as linear combinations of the basic objects

Tr (Dn1 ϕ · · · DnL ϕ) , n1 + · · · + nL = N, (1.1)

where ϕ is one of the three complex scalar fields of N = 4 SYM and D is a light-cone

covariant derivative. The numbers {ni} are non-negative integers and their sum N is the

total spin. As usual, the number L of ϕ fields is called the twist of the operator. It equals

the classical dimension minus the spin. The subsector of states with fixed spin and twist

is also perturbatively closed under renormalization mixing.

The sl(2) sector is very rich and interesting. Even when the twist is kept low, it

is a non-trivial infinite dimensional sector with certain similarities with analogous QCD

composite operators appearing in deep inelastic scattering.

At one loop, the dilatation operator can be interpreted as the integrable Hamiltonian

of a spin chain with L sites. At each site, the degrees of freedom, associated with Dn ϕ,

transform in the s = 1/2 infinite dimensional sl(2) representation [19].

Going beyond one loop, asymptotic all-order Bethe ansatz equations have been pro-

posed [9]. Important successful checks are described in [20, 21, 13]. Thanks to supersym-

metry, wrapping problems (see [22, 23] for recent developments) only occur at L+ 2 loop

order in twist-L operators [10, 11]. Hence, if we are interested in a three loop analysis, the

twists L = 2 and 3 are safe. We shall focus on these cases.

Scaling composite operators are elements in the span of eq. (1.1) which are eigenvectors

of the dilatation operator. The eigenvalues are the anomalous dimensions γ(N,L, λ) where

λ is the ’t Hooft planar coupling (Nc → ∞ is the number of colors sent to infinity with

constant λ)

λ =
g2
YMNc

8π2
, (1.2)

At fixed twist L, one is interested in the perturbative expansion of γ(N,L, λ) that takes

the form

γ =

∞
∑

n=1

γn(N)λn. (1.3)

Technically, integrability permits to write down Bethe ansatz equations that compute γ

order by order in λ. The Bethe equations are algebraic equations for the Bethe roots.

Given a solution, one inserts the Bethe roots in a simple closed expression providing γ.

The number of Bethe roots is precisely N . So, the above procedure must be repeated at

each given N . It is not obvious how to find a parametric expression of γn(N) as a function

of N . Nevertheless, such closed formulae are important in physical applications like, for

instance, the BFKL analysis of pomeron exchange [24].

– 2 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
7

Recently, work on twist-2 and 3 operators has led to higher order conjectures for the

functions γn(N) in various twists and in generalized subsectors [22, 25 – 28]. However,

proofs are missing, at least beyond one-loop.

The general way to deduce such conjectures is somewhat deceiving. One starts by

solving the Bethe ansatz equations at various N . Generally, the Bethe roots are non-trivial

algebraic numbers. Nevertheless, γn(N) turns out to be a rational number to any precision.

Given a sufficiently long sequence of such rational numbers, one makes an inspired guess

about the closed formula for γn(N). General arguments from Feynman diagram calcula-

tions and deep properties like reciprocity [29, 30, 26] are invoked to constrain the general

expression. In several cases, a simple expression is found.

However, if it were not for the amount of inspiration, these conjectures would be

nothing but interpolation formulae, although surprisingly simple. It would be very nice to

prove these formulae without making conjectures. Three natural lines of investigation are

the following:

1. Bethe ansatz equations. As we mentioned, they deal with the Bethe roots as the

basic object. This is a bit unnatural if one is ultimately interested in the anomalous

dimensions which are a much simpler quantity. The Bethe equations can be used

to obtain the asymptotic density of Bethe roots, i.e. the N → ∞ limit [13, 16,

31]. However, systematic corrections at large N appear to be rather involved and

practically restricted to a few orders [32].

2. Baxter equation. An alternative approach to the calculation of γ(N) is based on the

Baxter approach originally formulated in [33]. The crucial ingredient is the Baxter

operator whose eigenvalues Q(u) obey a relatively simple functional equation. If

Q(u) is assumed to be a polynomial, then the Baxter equation is equivalent to the

algebraic Bethe ansatz equations for its roots to be identified with the Bethe roots.

A more general discussion with references to the non-polynomial cases can be found

in [34, 35]. Remarkably, the polynomial Q(u) turns out to have rational coefficients

in all cases where a closed ansatz for γ(N) has been proposed. Accordingly, the

anomalous dimension is a rational combination of derivatives of Q(u). This approach

leads to the known exact one-loop formulae. The key feature is that the one-loop

Baxter polynomial is known as an analytic function of N in this case. Unfortunately,

such a nice result is not available beyond one-loop.

3. Conformal methods. These are reviewed in the recent paper [36]. Leading twist

conformal primary operators lie on the unitarity bound and hence are conserved

(irreducible) in the free theory. It is possible to cleverly exploit the pattern of breaking

of the irreducibility conditions in the interacting theory. In the end, it is possible to

gain an order of perturbation theory and infer two-loop results from the lowest order

calculations.

In this paper, we shall reconsider the Baxter approach. We give up the task of com-

puting the exact Baxter polynomial at more than one loop parametrically in the spin N .

Instead, we develop a technique to systematically derive the large spin expansion of γ(N)
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at high orders in the natural logarithmic expansion ∼ logn N/Nm. This will permit to

derive from first principles the expansion of γ(N) although without knowing its resumma-

tion. This can be regarded as a strong check of the proposed conjectures at large spin.

It is also a useful result by itself if, for instance, one is interested in proving large spin

properties like reciprocity.

The sketch of the paper is the following. First, we illustrate the method in the easy

one-loop case in twist-2 and 3. At this level, we do nothing more than rephrase a very

tricky technique originally devised by G. Korchemsky in [35]. The resulting procedure will

be called ∆-method for brevity. It works well and the desired expansion is systematically

obtained in a few lines of calculations, easily implemented on symbolic algebra packages.

Then, we move to the two-loop case. Here, we find some surprise. The ∆-method fails

to reproduce the rational part of γ2(N) starting from the terms O(1/N4). Curiously, the

failure is not signaled by any apparent pathology. The lesson is that the ∆-method can be

misleading, although it works well for the non rational part and for all the logarithmically

enhanced contributions. The problem is not present in twist-3 as we illustrate and partially

explain.

As a further step, we analyze what is happening in twist-2 and propose a safe improved

expansion of the Baxter equation which correctly reproduces the full anomalous dimension.

Finally, we analyze the twist-3 case at three loop to show that again there is a failure in the

rational part of γ. The same solution adopted for the twist-2, 2-loop case, solves completely

the problem and appear to be the necessary universal recipe for this kind of expansions.

2. The one-loop Baxter equation in the sl(2) sector

2.1 General structure of the Baxter equation

In the notation of [37], the one-loop Baxter equation in sl(2)-like sectors is

(u+ i s)LQ(u+ i) + (u− i s)LQ(u− i) = tL(u)Q(u), (2.1)

where L is the twist, s the conformal spin, and tL(u) a polynomial

tL(u) = 2uL + qL,2 u
L−2 + · · · + qL,L. (2.2)

For brevity, in the following, we shall refer to tL(u) as the transfer matrix with a small

abuse of language.

The second charge qL,2 is explicitly known and reads

qL,2 = −(N + Ls)(N + Ls− 1) + Ls (s− 1), (2.3)

where N is the spin quantum number of the solution. We shall be interested in the

polynomial solution

Q(u) =
N
∏

i=1

(u− ui). (2.4)
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Replacing into the Baxter equation, we obtain the Bethe ansatz equations for the XXXs

sl(2) spin chain
(

uk + i s

uk − i s

)L

=
N
∏

j=1,j 6=k

uk − uj − i

uk − uj + i
. (2.5)

The one-loop anomalous dimension/energy and quasi-momentum are given in terms of the

Bethe roots ui by

γ1 =
N
∑

k=1

2 s

u2
k + s2

, ei θ =
N
∑

k=1

uk − i s

uk + i s
. (2.6)

They can be calculated from the Baxter polynomial, completely bypassing the knowledge

of {ui}

γ1 = i (logQ(u))′
∣

∣

∣

∣

u=+i s

u=−i s

, ei θ =
Q(+i s)

Q(−i s)
. (2.7)

In the sl(2) sector, we must set s = 1
2 . Also we shall always take N even. In this case, the

ground state with minimal anomalous dimension is non degenerate and has Q(u) = Q(−u)

with automatically vanishing quasi-momentum. This is correct for single-trace composite

operators in the gauge theory. Exploiting parity, the anomalous dimension is simply

γ1 = 2 i (logQ(u))′
∣

∣

∣

∣

u=+i s

. (2.8)

2.2 Ground state solution in twist 2 and 3

The structure of the ground state, i.e. with minimal anomalous dimension, is rather simple

for even N and twist 2 or 3. In the twist-2 case, t2(u) does not depend on any unknown

quantum number

t2(u) = 2u2 + q2,2, (2.9)

q2,2 = −
1

2
−N (N + 1). (2.10)

The Baxter function is the even hypergeometric polynomial [38]

Q(u) = 3 F2

(

−N,N + 1,
1

2
− i u; 1, 1; 1

)

. (2.11)

From this explicit expression we can compute the one-loop anomalous dimension

γ1(N) = 4S1(N), (2.12)

where (nested) harmonic sums are defined as usual by

Sa(N) =

N
∑

n=1

(sign a)n

n|a|
, Sa,b =

N
∑

n=1

(sign a)n

n|a|
Sb(n). (2.13)

In particular S1 is the harmonic sum

S1(N) = 1 +
1

2
+ · · · +

1

N
. (2.14)
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The twist-3 case is also simple because again t3(u) do not depend on any unknown

quantum number.

t3(u) = 2u3 + q3,2 u, (2.15)

q3,2 = −
3

4
−

(

N +
1

2

) (

N +
3

2

)

. (2.16)

The Baxter function is the even hypergeometric polynomial [28, 26, 22]

Q(u) = 4 F3

(

−
N

2
,
N

2
+ 1,

1

2
+ i u,

1

2
− i u; 1, 1, 1; 1

)

, (2.17)

which can be written in terms of Wilson polynomials (see appendix B of [39]).

From this explicit expression we can compute the one-loop anomalous dimension

γ1(N) = 4S1

(

N

2

)

. (2.18)

2.3 Large N expansion of the exact γ1

The large N expansion of γ1 is that of the function 4S1(1/ε) for small values of the variable

ε defined as

twist-2 ε =
1

N
, twist-3 ε =

2

N
. (2.19)

The expansion is well-known in analytic form at all orders and reads

4S1

(

1

ε

)

= −4 log ε+ 4 γE + 2 ε− 2

∞
∑

k=1

B2 k

k
ε2 k, (2.20)

where Bk are Bernoulli numbers defined by

t

et − 1
=

∞
∑

k=0

Bk

k!
tk = 1 −

t

2
+
t2

12
−

t4

720
+

t6

30240
−

t8

1209600
+ O

(

t10
)

. (2.21)

2.4 Large N expansion from the Baxter equation

Now, our aim is to obtain the expansion eq. (2.20) directly from the Baxter equation and

without exploiting the known exact solution. Let us show that this is quite simple. We use

a trick first introduced by G. Korchemsky [35, 39] with some small modification to easy

the implementation on symbolic calculation packages.

First, we define u = i z and

Q(i z) = eF (z), ∆(z) = F (z + 1) − F (z). (2.22)

The cases twist-2 and 3 must be treated separately because the calculations differ in the

details.
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2.4.1 Twist-2

We write the Baxter equation as

ε2
(

z +
1

2

)2

e∆(z) + ε2
(

z −
1

2

)2

e−∆(z−1) = 1 + ε+ ε2
(

1

2
+ 2 z2

)

. (2.23)

The analysis of [35] can be rephrased as the following very simple ansatz for the asymptotic

expansion of ∆(z)

∆(z) = −2 log ε+
∞
∑

n=0

an(z) εn. (2.24)

This expansion is derived for sufficiently large positive z and is assumed to admit an

analytic continuation down to z = 1/2.

Now, the procedure that we shall call ∆-method goes in 3 simple steps:

1. Replace eq. (2.24) into eq. (2.23) and match the various integer powers of ε to obtain

the functions an(z).

2. Given ∆(z), get back the derivative of logQ, i.e. F (z).

3. Evaluate F ′(1/2) to get the one-loop anomalous dimension.

Let us see how all this can be accomplished. First, step (1). After expansion, we get

∆(z) = −2 log ε− 2 log

(

z +
1

2

)

+ ε+ 2 z2 ε2 −

(

2 z2 +
1

6

)

ε3 + (2.25)

−
1

16

(

4z2 + 1
) (

12z2 − 8z − 1
)

ε4 +
1

40

(

240z4 − 160z3 + 120z2 − 40z + 3
)

ε5 +

+
1

12

(

80z6 − 144z5 + 120z4 − 96z3 + 21z2 − 3z
)

ε6 +

+
1

112

(

−2240z6 + 4032z5 − 5040z4 + 3808z3 − 1540z2 + 364z − 33
)

ε7 + · · · .

To perform step (2), we first notice that from the definition of ∆(z) we deduce

F ′(z) =
D

eD − 1
∆(z). (2.26)

The linear operator on the r.h.s. can be evaluated in closed form when acting on many

special g(z). In particular, this is true for all g(z) that will appear in this and later

calculations. The simplest case is that of polynomial g(z)

D

eD − 1
zn = Bn(z), (2.27)

where Bn(z) is the n-th Bernoulli polynomial defined by the generating function

t et z

et − 1
=

∞
∑

k=0

Bk(z)

k!
tk. (2.28)
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Also, for g(z) = log z, we have the very useful identity

D

eD − 1
log z = ψ(z), where ψ(z) =

d

dz
log Γ(z). (2.29)

Taking derivatives, we also obtain

D

eD − 1

1

zn
=

(−1)n+1

(n− 1)!
ψ(n)(z), ψ(n)(z) =

dn

dzn
ψ(z). (2.30)

Going back to the problem of determining F ′(z), we immediately find

F ′(z) = −2 log ε− 2ψ

(

z +
1

2

)

+ ε+
1

3

(

6 z2 − 6 z + 1
)

ε2 −
1

2
(2 z − 1)2 ε3

+
1

240

(

−720 z4 + 1920 z3 − 1560 z2 + 480 z − 41
)

ε4 +
1

8
(2 z − 1)3(6 z − 7)ε5 +

+
1

252

(

1680 z6 − 8064 z5 + 14280 z4 − 12096 z3 + 5145 z2 − 1008 z + 61
)

ε6 +

−
1

16

(

(2 z − 3) (2 z − 1)3
(

20 z2 − 36 z + 17
))

ε7 + · · · . (2.31)

The last step (3) is trivial. Using ψ(1) = −γE to evaluate γ1 = 2F ′(1/2) we immediately

recover the correct expansion in full agreement with eq. (2.20) !

2.4.2 Twist-3

The same analysis can be repeated in twist-3. The details are quite similar, but slightly

different. The final expression of the function ∆(z) is now

∆(z) = −2 log ε+ log z − 3 log

(

z +
1

2

)

+ 2 log 2 + ε+

(

z2

2
−

1

8

)

ε2 +

(

−
z2

2
−

1

24

)

ε3

+

(

−
3z4

16
+
z3

8
+

13z2

64
+

3z

64
−

1

1024(z − 1)
+

11

256
+

1

1024z

)

ε4

+

(

3z4

8
−
z3

4
+

3z2

32
−

3z

32
+

1

512(z − 1)
−

7

640
−

1

512z

)

ε5 (2.32)

+

(

5z6

48
−

3z5

16
−

5z4

32
+
z3

16
−
z2

8
+

9z

128
−

7

4096(z − 1)
−

7

1536
+

7

4096z

)

ε6 + · · · .

Again, each term can be worked out explicitly to give a simple analytic expression for

F ′(z). Although ∆(z) is quite different than that for twist-2, one checks that again the

same and correct expansion of γ1 (now with ε = 2/N) is obtained.

2.5 Comments

Before moving to the two-loop case, it is convenient to stop and comment about the above

procedure.

The ∆-method in its original form is based on the following observation. The l.h.s. of

the Baxter equation must balance the transfer matrix t(u) at large N . This is accomplished

for Imu > 0 by assuming that the term ∼ (u+ i/2)L is dominant and treating the second

– 8 –
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piece as a perturbation. This seems to be quite reasonable since in the end we want to

compute F ′(z) in z = 1/2 where the second piece vanishes. Our implementation starting

directly from a logarithmic expansion of ∆(z) follows this simple idea. Notice however

that the expansion is guaranteed to work for large enough z, depending on the order of

the expansion. In the original work [35], one has to analytically continue down to z = 1/2

which appears to be dangerous. Nevertheless, the machinery works well at one-loop. We

shall find surprises at two loops.

As a second comment, we notice that the Baxter equation is invariant under any

transformation

Q(u) → h(u)Q(u), with h(u) = h(u+ i). (2.33)

In other word, F (z) is determined modulo an additive term with periodicity 1 in the z

variable. In the above one-loop examples, this term is absent. Heuristically, this can be

explained as follows. Given a polynomial Q(u), it seems reasonable to conclude that at

each order in 1/N , logQ(u) must grow at most polynomially with u. A periodic contribu-

tion in the z variable would instead lead to exponentially growing quantities. Certainly, it

would be nice to understand this point better.

We now move to the more interesting two-loop case where we shall show the partial

failure of the ∆-method.

3. The two-loop Baxter equation for the ground state

3.1 General structure

The long range Baxter equation for the sl(2) sector of N = 4 SYM is discussed at three

loop accuracy in [40]. Here, we shall be interested in the two loop reduction that we discuss

in full details in the case of the ground state.

We shall require the following definitions

x(u) =
u

2

(

1 +

√

1 −
2λ

u2

)

, (3.1)

u± = u±
i

2
, x± = x(u±). (3.2)

Also, for σ = ±1, we introduce

Λσ =
d

du
log Q(u)

∣

∣

∣

∣

u= i
2

σ

, ∆σ(x) = xL exp

(

−
λ

x
Λσ

)

. (3.3)

Notice that Λσ is independent on the spectral parameter u. However, it depends on the

coupling hidden in the Baxter function Q(u).

The long-range Baxter equation reads

∆+(x+)Q(u+ i) + ∆− (x−) Q(u− i) = tL(u)Q(u), (3.4)

– 9 –
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where tL(u) gets radiative corrections to the conserved charges. For the twist-2 and twist-3

ground state, this simply means

t2(u) = 2u2 + q
(0)
2,2 + λ q

(1)
2,2, (3.5)

t3(u) = 2u3 + u
(

q
(0)
3,2 + λ q

(1)
3,2

)

, (3.6)

where q
(0)
L,2 is the one-loop charge and q

(1)
L,2 a two loop correction to be computed.

In the ground state, this equation must be solved in terms of

Q(u) = Q(0)(u) + λQ(1)(u), (3.7)

where the polynomials Q(0), Q(1) are even and with degrees N , N−2 respectively. Of course

Q(0) is the one-loop Baxter polynomial. Given Q(u), the two-loop anomalous dimension is

γ = γ1 λ+ γ2 λ
2 = 2 i λ

[

(logQ)′
∣

∣

u=i/2
+
λ

4
(logQ)′′′

∣

∣

u=i/2

]

. (3.8)

It is convenient to write

log Q(u) = F (0)(u) + λF (1)(u) + O(λ2). (3.9)

Then, an alternative expression for γ is

γ = 2 i λ

[

F (0)′ + λ

(

F (1)′ +
1

4
F (0)′′′

)]
∣

∣

∣

∣

u=i/2

. (3.10)

To go on, we need the two-loop charge q
(1)
L,2. This is easy to compute. For both L = 2, 3

we have

Λ± = ∓
i

2
γ1, (3.11)

where γ1 = γ1(N) is the one-loop anomalous dimension. Expanding ∆±(x±), we find

L = 2, ∆±(x±) = u2
± + λ (−1 − u± Λ±) + O(λ2) (3.12)

L = 3, ∆±(x±) = u3
± + λu±

(

−
3

2
− u± Λ±

)

+ O(λ2). (3.13)

We replace these expansions in the Baxter equation and match the leading terms powers

of u. After a short calculation, we obtain the following compact results

L = 2, q
(1)
2,2 = −2 −

1

2
(1 + 2N) γ1, (3.14)

L = 3, q
(1)
3,2 = −3 − (1 +N) γ1. (3.15)

To summarize, at two-loop order, we want to study the large N expansion of the following

truncated Baxter equations

Twist-2.
[

u2
+ + λ

(

i

2
γ1 u+ − 1

)]

Q(u+ i) +

[

u2
− + λ

(

−
i

2
γ1 u− − 1

)]

Q(u− i) =

=
(

2u2 + q
(0)
2,2 + λ q

(1)
2,2

)

Q(u), (3.16)
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Twist-3.

[

u3
+ + λu+

(

i

2
γ1 u+ −

3

4

)]

Q(u+ i) +

[

u3
− + λu−

(

−
i

2
γ1 u− −

3

4

)]

Q(u− i) =

= u
(

2u2 + q
(0)
3,2 + λ q

(1)
3,2

)

Q(u) . (3.17)

These equations are rather complicated but indeed admit the desired polynomial so-

lutions. As a concrete example, we list here their solutions at N = 4

Twist-2.

Q(u) =

(

35u4

12
−

65u2

24
+

9

64

)

+

(

25

14
−

80u2

7

)

λ+ O(λ2), (3.18)

γ =
25λ

3
−

925λ2

54
+O

(

λ3
)

. (3.19)

Twist-3.

Q(u) =

(

3u4

2
−

9u2

4
+

11

32

)

+

(

47

16
−

27u2

4

)

λ+O
(

λ2
)

, (3.20)

γ = 6λ−
39λ2

4
+O

(

λ3
)

. (3.21)

3.2 Two-loop conjectures for γ and their large N expansions

In literature, we can find two loop conjectures for γ in twist-2 and twist-3. In the next

sections, we shall report their expressions as well as the rigorous large N expansions.

3.2.1 Twist-2

The two-loop conjecture for γ2 in twist-2 and even N is well-known [41]. We adhere to the

notation of [28]. It reads

γ2 = −4 [S3(N) + S−3(N) − 2S−2,1(N) + 2S1(N) (S2(N) + S−2(N))] =

= −S3

(

N

2

)

+ 8S−2,1(N) − 4S1(N)S2

(

N

2

)

. (3.22)

The large N expansion of this expression can be derived with minor effort. The simple

harmonic sums Sa(N) or Sa(N/2) can be expanded by using the known result

Sa(N) = ζa +
a− 2N − 1

2 (a− 1)Na
−

1

(a− 1)!

∑

k≥1

(2 k + a− 2)!B2 k

(2 k)!N2 k+a−1
, a ∈ N, a > 1. (3.23)

The nested sum S−2,1(N) is a bit tricky. A convenient heuristic procedure is as follows.

We start from the recurrence relation

S−2,1(N + 2) − S−2,1(N) =
S1(N + 2)

(N + 2)2
−
S1(N + 1)

(N + 1)2
, N even, (3.24)
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and insert in place of S−2,1(N) a generic logarithmic expansion for large N . The various

terms ∼ lognN/Nm can be easily matched and the final result is

S−2,1

(

1

ε

)

= −
5ζ3
8

+

(

γE

2
−

log ε

2

)

ε2 +

(

log ε

2
−
γE

2
+

1

2

)

ε3 −
5ε4

12
+

+

(

−
log ε

2
+
γE

2
−

11

24

)

ε5 +
151ε6

240
+

(

3 log ε

2
−

3γE

2
+

469

240

)

ε7 +

−
331ε8

126
+

(

−
17 log ε

2
+

17γE

2
−

67379

5040

)

ε9 + · · · . (3.25)

Combining these partial expansions, we obtain the desired expansion of γ2 as

γ2 =

(

2

3
π2 log ε− 6ζ3

)

+

(

−8 log ε−
π2

3

)

ε+

(

4 log ε+
π2

18
+ 6

)

ε2 + (3.26)

+

(

−
4 log ε

3
−

14

3

)

ε3+

(

4−
π2

180

)

ε4+

(

4 log ε

15
−

182

45

)

ε5+

(

−
5

2
+
π2

378

)

ε6+· · · ,

where ε = e−γE ε. In the following, we shall systematically omit the terms proportional

to γE since they can all be generated by the replacement log ε → log ε. In the above

expressions, we have defined

ζn = ζ(n) =

∞
∑

k=1

1

kn
. (3.27)

3.2.2 Twist-3

The two-loop conjecture for γ2 in twist-3 has been obtained independently in [28, 22] and

takes the simple form

γ2 = −2S3

(

N

2

)

− 4S1

(

N

2

)

S2

(

N

2

)

. (3.28)

The large N expansion can be evaluated without particular difficulties and it finally reads

γ2 =

(

2

3
π2 log ε−2ζ3

)

+

(

−4 log ε−
π2

3

)

ε+

(

2 log ε+
π2

18
+3

)

ε2+

(

−
2 log ε

3
−

7

3

)

ε3

+

(

1 −
π2

180

)

ε4 +

(

2 log ε

15
−

1

45

)

ε5 +

(

−
1

4
+

π2

378

)

ε6 + · · · . (3.29)

3.3 Large N expansion from the Baxter equation: ∆-method in twist-2

We repeat the same kind of analysis we did in the one-loop case. The two loop Baxter

equation involves S1(N) which we expand to any desired order in ε. Writing

F (z) = F (0)(z) + λF (1)(z), (3.30)

∆(z) = F (z + 1) − F (z) = ∆(0)(z) + λ∆(1)(z), (3.31)

we find that the new contribution ∆(1)(z) can be plainly matched to the equation if it takes

the general form ( we recall again that in the following we set ε ≡ ε for simplicity)

∆(1)(z) =

∞
∑

n=0

(an(z) log ε+ bn(z)) εn. (3.32)
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The logarithmic enhancement is expected given the exact large N expansion of γ2. Besides,

it is required from the equation after expansion. The actual expression of ∆(1)(z) reads

∆(1)(z) =

(

4 log ε

2z + 1
−

4

(2z + 1)2

)

+

(

−4 log ε−
2

2z + 1

)

ε+ (3.33)

+

(

2 log ε+
1

3(2z + 1)
+ 4

)

ε2 +

(

8z2 log ε−
10

3

)

ε3 +

+

(

−10z2 + 2z +
(

−12z2 − 1
)

log ε−
1

30(2z + 1)
+

2

3

)

ε4 + · · · .

The expansion can apparently be continued to any order and no special problems do appear.

However, if we compute the predicted γ2, we encounter a subtle problem already at order

ε4. The anomalous dimension is given by

γ2 = 2 lim
z→ 1

2

[

(F (1)(z))′ −
1

4
(F (0)(z))′′′

]

. (3.34)

Evaluating F (1)(z) by the same methods we used at one-loop and solving the difference

equations associated with ∆(1)(z), we easily find

γ2,∆−method =

(

2

3
π2 log ε− 6ζ3

)

+

(

−8 log ε−
π2

3

)

ε+

(

4 log ε+
π2

18
+ 6

)

ε2 +

+

(

−
4 log ε

3
−

14

3

)

ε3 +

(

2 −
π2

180

)

ε4 + · · · . (3.35)

Comparing with the exact result eq. (3.26), one sees that a mismatch appears at order ε4.

Expanding the calculation to higher orders, one finds

γ2,∆−method − γ2 = −2 ε4 + 4 ε5 + 2 ε6 − 16 ε7 − 6 ε8 + 108 ε9 + 34 ε10 +O
(

ε11
)

. (3.36)

All terms of the above mismatch are not transcendental neither have logarithmic enhance-

ment. So, we conclude that the ∆-method works at leading logarithmic accuracy including

also the non-enhanced transcendental terms. However, it does not work for the rational

contributions starting from O(ε4) !

This failure seems to be related to the fact that the two-loop terms ∼ u− in the l.h.s.

of the Baxter equations do not vanish at z = 1/2. Later, we shall clarify this point.

3.4 Large N expansion from the Baxter equation: ∆-method in twist-3

The twist-3 case is much more easy because the special structure of the two-loop Baxter

equation. The terms ∼ u− in the l.h.s. of the Baxter equations vanish at z = 1/2. A

straightforward calculation provides the following expression of the two-loop difference
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function ∆(1)(z)

∆(1)(z) =
2 log ε

z + 1
2

−
6

(2z + 1)2
+ ε

(

−2 log ε−
2

2z + 1

)

+ε2
(

42z + 25

12(2z + 1)
+ log ε

)

+ ε3
(

1

4

(

4z2 − 1
)

log ε−
17

12

)

+ε4

(

−4080z2 + 720z − 45
z−1 − 128

2z+1 + 2240 + 45
z

3840
+

1

8

(

−12z2 − 1
)

log ε

)

+ε5
(

47z2

24
−

3z

8
+

3

128

(

1

z − 1
−

1

z

)

+
7

120

+

(

−
3z4

4
+
z3

2
+

13z2

16
+

3z

16
+

1

256

(

1

z
−

1

z − 1

)

+
11

64

)

log ε

)

+ · · · .

The contributions from the rational functions can be evaluated in F ′(1/2) by using in

particular the special values

ψ(1/2) = −γE − 2 log 2,

ψ′(1/2) = π2/2,

ψ′′(1/2) = −14 ζ3,

ψ′′′(1/2) = π4,

ψ(−1/2) = 2 − γE − 2 log 2,

ψ′(−1/2) = 4 + π2/2,

ψ′′(−1/2) = 16 − 14 ζ3,

ψ′′′(−1/2) = 96 + π4.

(3.37)

A short calculation shows that the correct complete two loop large spin expansion of the

anomalous dimension eq. (3.29) is perfectly reproduced by starting from the above expres-

sion.

4. The improved expansion of the Baxter equation in twist-2

Let us go back to the weak points of the ∆-method. We are assuming an expansion for

∆(z) valid in the Baxter equation for both ∆(z) and ∆(z−1) in a neighborhood of z = 1/2.

The assumed expansion is clearly wrong as it stands. For instance, by parity invariance we

have rigorously ∆(−1/2) = 0 which is not obvious in the expansion derived at large z > 0.

To see what is happening, we look at the leading term in the ε→ 0 expansion of F (z).

It is easily derived as

F (z) = −2 |z| log ε+ · · · . (4.1)

If z > 1, we obtain

∆(z) = −2 log ε+ · · · , (4.2)

−∆(z − 1) = +2 log ε+ · · · . (4.3)

The different signs are responsible for the suppression of the second piece of the Baxter

equation

e∆(z) ∼
1

ε2
, e−∆(z−1) ∼ ε2. (4.4)
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However, if z is around 1/2, the value we are interested in, we find, for small enough ρ

z =
1

2
+ ρ, (4.5)

∆(z) = −2 log ε+ · · · , (4.6)

−∆(z − 1) = −F (z) + F (z − 1) = 2

(∣

∣

∣

∣

1

2
+ ρ

∣

∣

∣

∣

−

∣

∣

∣

∣

−
1

2
+ ρ

∣

∣

∣

∣

)

log ε+ · · · =

= 4 ρ log ε+ · · · . (4.7)

These expansions lead to the completely altered balance of the two terms in the l.h.s. of

the Baxter equation

e∆(z) ∼
1

ε2
, e−∆(z−1) ∼

1

ε2
ε4 z. (4.8)

In particular, this means that the expansion of F will contain powers of ε4 z multiplied by

eventual additional integer powers of ε and possible logarithmic enhancements.

We shall see that these anomalous terms are actually present and are highly non-trivial.

At one-loop they will not contribute in both twist 2 and 3 giving a rigorous support to the

applicability of the ∆-method to the one-loop Baxter equation. However, at two-loops they

will give a non-trivial crucial contribution in twist-2, being still negligible in twist-3. Later,

we shall show that they must be included in the three loop analysis of twist-3. In conclusion,

a safe procedure amounts to compute them to see if they are relevant or negligible.

Now, let us go back to the solution of the twist-2 problem. We have seen that we

have to work with the function F (z) forced to be even under z → −z and including in its

asymptotic expansion possible anomalous terms according to

F (0)(z) = −2 z log ε+
∞
∑

n=0

a(0)
n (z) εn +

∞
∑

m=1

∞
∑

n=0

f (0)
m,n(z) ε4 m z+n, (4.9)

F (1)(z) =

∞
∑

n=0

(a(1)
n (z) + b(1)n (z) log ε) εn +

∞
∑

m=1

∞
∑

n=0

(f (1)
m,n(z) + g(1)

m,n(z) log ε) ε4 m z+n.

Notice that, in principle, the anomalous pieces give contributions to both the logarithmic

and non-logarithmic terms of the anomalous dimension. As a check, we shall also observe

the cancellation of the logarithmic extra contributions.

Very remarkably, the non-anomalous functions a
(0)
n , a

(1)
n and b

(1)
n turns out to be equal

to those computed in the ∆-method. For completeness, we shall report them, since we

have already given their contribution to ∆(z), but not to F (z). Instead, the anomalous

functions f
(0)
m,n, f

(1)
m,n and g

(1)
m,n are very non-trivial.

Here are the explicit results that can be found with some labor expanding the Baxter

equation. Of course, one cannot use anymore the difference function ∆(z), but use instead

the correct replacements valid in a neighborhood of z = 1/2

∆(z) = F (z + 1) − F (z), (4.10)

∆(z − 1) = F (z) − F (z − 1) = F (z) − F (1 − z). (4.11)

After these replacements, we insert in the Baxter equation the generalized asymptotic

expansion of F (z) for z > 0 described in eq. (4.9).
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We give all the expressions that are needed to reproduce the anomalous dimension at

order O(ε5 log ε) included. This requires to consider the following functions

a(ℓ)
n , 0 ≤ n ≤ 5, ℓ = 0, 1

f
(ℓ)
1,n , 0 ≤ n ≤ 3, ℓ = 0, 1,

b(1)n , 0 ≤ n ≤ 5, (4.12)

g
(1)
1,n , 0 ≤ n ≤ 3,

f
(ℓ)
2,n , n = 0, 1, ℓ = 0, 1,

g
(1)
2,n , n = 0, 1.

First the non-anomalous one-loop contributions

a
(0)
0 (z) = −2 log Γ

(

z +
1

2

)

, (4.13)

a
(0)
1 (z) = z, (4.14)

a
(0)
2 (z) =

1

3
z (z − 1) (2 z − 1), (4.15)

a
(0)
3 (z) = −

1

6
z (3 − 6 z + 4 z2), (4.16)

a
(0)
4 (z) = −

1

240
z (2 z − 1)

(

72 z3 − 204 z2 + 158 z − 41
)

, (4.17)

a
(0)
5 (z) =

1

40
z
(

48 z4 − 160 z3 + 200 z2 − 120 z + 35
)

(4.18)

Then, the two-loop non-anomalous contributions

a
(1)
0 = ψ(1)

(

z + 1
2

)

,

a
(1)
1 = −ψ

(

z + 1
2

)

,

a
(1)
2 = 4 z + 1

6 ψ
(

z + 1
2

)

,

a
(1)
3 = −10

3 z,

a
(1)
4 = −2 z + 6 z2 − 10

3 z
3 − 1

60 ψ(
(

z + 1
2

)

),

a
(1)
5 = 1

45 z
(

280 z2 − 510 z + 299
)

,

b
(1)
0 = 2ψ

(

z + 1
2

)

,

b
(1)
1 = −4 z,

b
(1)
2 = 2 z,

b
(1)
3 = 4

3 z (z − 1) (2 z − 1),

b
(1)
4 = −z (3 − 6 z + 4 z2),

b
(1)
5 = − 1

30 z (2 z − 1)×
(

72 z3 − 204 z2 + 158 z − 41
)

.
(4.19)

Now, the more interesting anomalous terms. We begin with those ∼ ε4 z+n. The one-loop

contributions are

f
(0)
1,0 (z) =

Γ
(

1
2 + z

)2

Γ
(

1
2 − z

)2 ,

f
(0)
1,1 (z) = −2 z

Γ
(

1
2 + z

)2

Γ
(

1
2 − z

)2 ,

f
(0)
1,2 (z) = −

2π2 z (z − 1) (2 z − 1)

3 cos2(π z) Γ
(

1
2 − z

)4 ,

f
(0)
1,3 (z) =

π2 z (3 + 4 z + 8 z3)

3 cos2(π z) Γ
(

1
2 − z

)4 .

(4.20)

Each of these functions has vanishing derivative in z = 1/2. This means that no anomalous

contributions appear at one-loop, recovering the correctness of the ∆-method at one loop.
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However, two-loop non trivial contributions are associated with the third derivative. For

instance

lim
z→ 1

2

d3

dz3

[

f
(0)
1,0 (z) ε4 z

]

= 24 ε2 log ε. (4.21)

The two-loop anomalous pieces are rather complicated. Let us define

D(z) = ψ(1)

(

3

2
+ z

)

− ψ(1)

(

3

2
− z

)

. (4.22)

We have

f
(1)
1,0 (z) = −

π2 (−32 z +D(z) (1 − 4 z2)2)

(1 + 2 z)4 cos2(π z) Γ
(

−1
2 − z

)2
Γ
(

3
2 − z

)2 , (4.23)

f
(1)
1,1 (z) =

π2 sec2(π z) (2 z (−32 z +D(z) (1 − 4 z2)2)) + π (1 − 4 z2)2 tan2(π z)

(1 + 2 z)4 Γ
(

−1
2 − z

)2
Γ
(

3
2 − z

)2 ,

and

f
(1)
1,2 (z) =

M2

6(2z − 1)(2z + 1)2Γ
(

1
2 − z

)4 , (4.24)

f
(1)
1,3 (z) =

M3

3(1 − 2z)2(2z + 1)Γ
(

1
2 − z

)4 (4.25)

with

M2 = π2 sec2(πz)
(

4z
(

D(z)(z − 1)
(

1 − 4z2
)2

− 8z(2z(6z + 5) − 7) + 12
)

+

−π(2z − 1)(2z + 1)2(12z + 1) tan(πz)
)

, (4.26)

M3 = π2z sec2(πz)
(

−π(2z + 1)
(

4z2 − 6z + 1
)

tan(πz)(1 − 2z)2+

−D(z)
(

1 − 4z2
)2 (

4z2 − 2z + 3
)

+ 4
(

2z
(

6z
(

8z2 + 2z − 5
)

+ 13
)

+ 5
)

)

Finally, we have

g
(1)
1,0(z) = −

2π3 tan(πz)

cos2(π z) Γ
(

1
2 − z

)4 , (4.27)

g
(1)
1,1(z) =

4π2z(π tan(πz) + 2)

cos2(π z) Γ
(

1
2 − z

)4 , (4.28)

g
(1)
1,2(z) =

4π2z(−12z + π(z − 1)(2z − 1) tan(πz) − 3)

3 cos2(π z) Γ
(

1
2 − z

)4 , (4.29)

g
(1)
1,3(z) = −

2π2z(2z + 1)
(

8z2 − 12z + π
(

4z2 − 2z + 3
)

tan(πz) + 4
)

3 cos2(π z) Γ
(

1
2 − z

)4 (4.30)

The anomalous contributions ∼ ε8 z+n can also be computed, however we have checked

that in all cases they do not give contributions to the anomalous dimension. This is due to
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the fact that the one loop contributions are O((z−1/2)4) while the two loop contributions

are O((z − 1/2)2). Some examples at one-loop are

f
(0)
2,0 (z) =

(2z + 1)2Γ
(

z + 1
2

)4
− 8Γ

(

z + 1
2

)2
Γ
(

z + 3
2

)2

2(2z + 1)2Γ
(

1
2 − z

)4 = (4.31)

= −
1

2

(

z −
1

2

)4

+ O

(

(

z −
1

2

)5
)

(4.32)

f
(0)
2,1 (z) =

2π2zΓ
(

z + 1
2

)2

cos2(πz) Γ
(

1
2 − z

)6 =

(

z −
1

2

)4

+ O

(

(

z −
1

2

)5
)

(4.33)

A two loop example is

f
(1)
2,0 (z) =

π4
(

−ψ(1)
(

3
2 − z

) (

1 − 4z2
)2

+ ψ(1)
(

z + 3
2

) (

1 − 4z2
)2

− 32z
)

cos4(π z) (1 − 4z2)2 Γ
(

1
2 − z

)8 =

= −

(

z −
1

2

)2

+ O

(

(

z −
1

2

)3
)

(4.34)

g
(1)
2,0(z) =

2π5 tan(πz)

cos4(πz)Γ
(

1
2 − z

)8 = −2

(

z −
1

2

)3

+ O

(

(

z −
1

2

)4
)

(4.35)

Collecting all results, we find the following contributions to the two loop anomalous

dimension. From the one-loop anomalous pieces

(F (0)
anom(z))′′′

∣

∣

∣

z=1/2
= 24 ε2 log ε−12 (2 log ε+1)ε3 +2 ε4 +2 (12 log ε+11)ε5 + · · · (4.36)

From the two-loop anomalous pieces

(F (1)
anom(z))′

∣

∣

∣

z=1/2
= 6 ε2 log ε− 3 (2 log ε+ 1)ε3 +

3 ε4

2
+

1

2
(12 log ε+ 7)ε5 + · · · (4.37)

The full anomalous contribution is the combination

2

[

(F (1)
anom(z))′ −

1

4
(F (0)

anom(z))′′′
]∣

∣

∣

∣

z=1/2

= 2 ε4 − 4 ε5 + · · · (4.38)

which is precisely the required piece to correct the mismatch in eq. (3.36) to order

O(ε5 log ε). We have extended the calculation to higher orders. The whole procedure

is easily automatized and in all cases, the mismatch is corrected.

5. The three loop Baxter equation: Twist-3

To conclude, we now analyze the three loop Baxter equation in twist-3 to show that even

in this case, it is necessary to include anomalous terms to match the rational part of the

large spin anomalous dimension.
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We have to extend the notation we introduced for the two loop case. To this aim, we

define for σ = ±1

Λ(n)
σ =

dn

dun
log Q(u)

∣

∣

∣

∣

u= i
2

σ

, (5.1)

∆σ(x) = x3 exp

(

−
λ

x
Λ(1)

σ −
λ2

4x2
(Λ(2)

σ + xΛ(3)
σ )

)

. (5.2)

The Baxter equation reads again

∆+(x+)Q(u+ i) + ∆− (x−) Q(u− i) = tL(u)Q(u). (5.3)

In the ground state the transfer matrix gets radiative corrections to the unique non-trivial

charge

t3(u) = u
[

2u2 +
(

q
(0)
3,2 + λ q

(1)
3,2 + λ2 q

(2)
3,2

)]

. (5.4)

This equation must be solved in terms of

Q(u) = Q(0)(u) + λQ(1)(u) + λ2Q(2)(u), (5.5)

where the polynomials Q(0), Q(1), Q(2) are even and with degrees N , N − 2, N − 2

respectively. The 3-loop anomalous dimension is conveniently expressed in terms of

F = log Q = F (0) + λF (1) + λ2 F (2) + O(λ3) (5.6)

as

γ = γ1 λ+ γ2 λ
2 + γ3 λ

3 =

= 2 i

[

F (0)′ λ+

(

F (1)′ +
1

4
F (0)′′′

)

λ2 +

(

F (2)′ +
1

4
F (1)′′′ +

1

48
F (0)′′′′′

)

λ3

]

, (5.7)

where all derivatives are evaluated at u = i/2.

A tedious but straightforward calculation gives the three loop expansion of ∆±(x±) in

terms of the one and two-loop anomalous dimensions

∆±(x±) = u3
± + u±

(

−
3

2
±
i

2
u± γ1

)

λ+

(

∓
i

2
γ1 −

1

8
u± γ

2
1 ±

i

2
u2
± γ2

)

λ2 + · · · (5.8)

as well as the three loop correction to the second charge

q
(2)
3,2 = −

1

4
γ2
1 − (1 +N) γ2. (5.9)

Notice that it is remarkable that such simple expressions can be obtained. They are

completely determined by the previous calculations at lower orders, i.e. γ1 and γ2. Notice

also that what is actually required is just their large N expansion. The resummed closed

form is not necessary.
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In conclusion, the 3-loop truncated Baxter equation is

[

u3
+ + u+

(

−
3

2
+
i

2
u+ γ1

)

λ+

(

−
i

2
γ1 −

1

8
u+ γ

2
1 +

i

2
u2

+ γ2

)

λ2

]

Q(u+ i) +

[

u3
− + u−

(

−
3

2
−
i

2
u+ γ1

)

λ+

(

+
i

2
γ1 −

1

8
u− γ

2
1 −

i

2
u2
− γ2

)

λ2

]

Q(u− i) =

= u
[

2u2 +
(

q
(0)
3,2 + λ q

(1)
3,2 + λ2 q

(2)
3,2

)]

Q(u). (5.10)

As we mentioned, the three loop terms in the second term of the l.h.s. do not vanish as

u− → 0. This suggests that anomalous contributions will be present at this order.

Again, an example can be useful to check the above equation. For N = 4 its solution is

Q(u) =

(

3u4

2
−

9u2

4
+

11

32

)

+

(

47

16
−

27u2

4

)

λ+

(

27u2

8
+

159

32

)

λ2 + · · · , (5.11)

γ = 6λ−
39λ2

4
+

957λ3

32
+ · · · (5.12)

5.1 Three loop conjecture for γ and its large N expansion

The three loop conjecture for γ3 is [28, 22]

γ3 = 5S5 + 6S2 S3 − 8S3,1,1 + 4S4,1 − 4S2,3 + S1 (4S2
2 + 2S4 + 8S3,1) (5.13)

with all harmonic sums evaluated at N/2. Its large N expansion can be worked out with

no problems and the result is (2/N = ε)

γ3 = −
11

45
π4 log ε+

π2

3
ζ3 − ζ5 +

(

4

3
π2 log ε− 2ζ3 +

11π4

90

)

ε+

+

(

−2 log2 ε+

(

−4 −
2π2

3

)

log ε+ ζ3 −
11π4

540
−

5π2

6
+ 1

)

ε2 +

+

(

2 log2 ε+

(

8 +
2π2

9

)

log ε−
ζ3
3

+
11π2

18
+ 2

)

ε3 + (5.14)

+

(

− log2 ε−
23 log ε

3
+

11π4

5400
−
π2

4
−

125

24

)

ε4 +

+

((

4 −
2π2

45

)

log ε+
ζ3
15

+
π2

135
+

23

4

)

ε5 +

+

(

log2 ε

3
+

log ε

45
−

11π4

11340
+
π2

18
−

448

135

)

ε6 + · · · .

Notice that generic double logarithms appear in the expansion. Formal properties of this

expression as well as its four loop extension are discussed in [26].

5.2 Large N expansion from the Baxter equation: ∆-method

Following the ∆-method we obtain the following three loop contribution to the function
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∆(z). It is convenient to write it in terms of

p = z +
1

2
. (5.15)

∆(2)(z) = −

(

π2p2 + 3
)

log ε

3p3
+
ζ3
p

+
9

8p4

+

[(

π2

3
+

2

p

)

log ε− ζ3 +
π2

6p
+

1

2p3

]

ε

+

[

− log2 ε+

(

−
π2

6
−2−

1

p

)

log ε+
ζ3
2
−
π2

6
−
π2

36p
−

3

2p
−

1

12p3

]

ε2+· · ·(5.16)

We stop at this order since this gives the following three loop anomalous dimension

γ3,∆−method =

(

−
11

45
π4 log ε− ζ5 +

1

3
π2ζ3

)

+

(

4

3
π2 log ε− 2ζ3 +

11π4

90

)

ε+

+

(

−2 log2 ε−
2

3
π2 log ε− 4 log ε+ ζ3 −

11π4

540
−

5π2

6

)

ε2 + · · ·(5.17)

The ε2 term is correct in the logarithmically enhanced and transcendental terms, but a

mismatch appears in the rational part. Extending the calculation at higher orders in the ε

expansion one gets the mismatch

γ3,∆−method − γ3 = −ε2 + ε3 −
5ε4

8
+
ε5

4
−

23ε6

216
+O

(

ε7
)

(5.18)

in quite close analogy with the twist-2 case.

5.3 Improved expansion

We illustrated the improved expansion of the Baxter equation in full details for the twist-2,

2 loop case. Here, we just show what happens at order O(ε2) to show that a quite similar

mechanism occurs. In particular, we want to give the explicit anomalous part in

F (z) = Freg(z) + Fanom(z). (5.19)

At three loops, the relevant terms contributing at O(ε2) are

Fanom(z) =
(

F (0)
anom(z) + λF (1)

anom(z) + λ2 F (2)
anom(z)

)

ε4 z + · · · . (5.20)

Here are the explicit expressions. The one-loop term is simply

F (0)
anom(z) =

16−zΓ(−z)Γ
(

z + 1
2

)3

Γ
(

1
2 − z

)3
Γ(z)

. (5.21)

The two loop term is

F (1)
anom(z) =

21−4zπ5 sec4(πz)

Γ
(

1
2 − z

)6
Γ(z)Γ(z + 1)

log ε+ (5.22)

−
32−4z−1π4(2z−1)

(

ψ(1)
(

3
2−z

) (

1−4z2
)2
−ψ(1)

(

z+ 3
2

) (

1−4z2
)2

+32z
)

(2z+1)5 sin(πz) cos3(πz)Γ
(

−z− 1
2

)3
Γ
(

3
2−z

)3
Γ(z)Γ(z+1)
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Finally, the three loop term is rather complicated, but has the following simple expansion

around z = 1/2,

F (2)
anom(z) = log ε+

(

z −
1

2

)

(

log2 ε− 2 log ε
)

+ O
(

(z − 1/2)2
)

(5.23)

The three loop anomalous dimension is given by (recall u = i z)

γ3,anom = F (0)
anom

′
+ λ

(

F (1)
anom

′
−

1

4
F (0)

anom
′′′
)

+ (5.24)

+λ2

(

F (2)
anom

′
−

1

4
F (1)

anom

′′′
+

1

48
F (0)

anom

′′′′′
)

Evaluating the derivatives in z = 1/2 we find at one-loop

F (0)
anom

′
= 0, (5.25)

F (0)
anom

′′′
= 3 ε2, (5.26)

F (0)
anom

′′′′′
= 240 ε2 (1 − 2 log ε+ 2 log2 ε). (5.27)

At two-loops

F (1)
anom

′
=

3

4
ε2, (5.28)

F (1)
anom

′′′
= 6 ε2 (3 − 8 log ε+ 10 log2 ε). (5.29)

Finally, at three loops

F (2)
anom

′
= ε2 log ε (−2 + 5 log ε). (5.30)

Summing all the contributions we see that all logarithms cancel with a full result

γ3,anom = +ε2 + · · · (5.31)

which is precisely the term needed to correct the O(ε2) mismatch in eq. (5.18).

6. Conclusions

We have considered the minimal anomalous dimension of twist-2 and 3 operators in the

sl(2) sector of N = 4 SYM. For this quantity, three loop conjectures have been proposed

for the closed function γ(N), N being the spin. These conjectures have never been proved.

In all cases, the guessed expressions can be expanded at large spin as

γ(N) =

∞
∑

n=0

Mn
∑

m=0

an,m(λ)
logm N

Nn
. (6.1)

These expansions are non trivial. For instance, the various terms obey generalized Moch-

Vermaseren-Vogt (MVV) relations [42, 43] related to reciprocity properties [29, 30, 26].

We have shown that the above expansion can be obtained in an algorithmic way from

the long-range Baxter equation valid in this sector. The method is based on an asymptotic
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expansion of the logarithm of the Baxter function F (z) = log Q(i z) suitable in the large

N limit in a neighbourhood of z = O(N0). Generically, it is composed of two parts

F (z) = Freg(z) + Fanom(z), (6.2)

where Freg(z) has a standard logarithmic expansion in 1/N and Fanom contains terms of

the form

Fanom(z) =

∞
∑

m=1

∞
∑

n=0

(

1

N

)4 m z+n Kn,m
∑

k=0

am,n,k(z) logk N. (6.3)

Our modest technical development completely bypasses the solution of the Bethe

ansatz equation and the determination of the large spin Bethe root density. Also, it does

not rely on any conjecture about γ(N). In principle, the method can be applied to more

complicated examples where a Baxter formulation is available, possibly in nested form. A

nice example is the sl(2|1) sector [44] where a general ansatz for γ(N) is not known and it

is an open question to prove the validity of reciprocity relations.
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